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1. Show that S2 and CP1 are diffeomorphic by constructing an explicit diffeomorphism between them.

Solution:

Construct the map f : S2 ! CP1 by

f(x1, x2, x3) :=

(
[x1+ix2

1�x3
, 1], x3 6= 1

[1, x1�ix2

1+x3
], x3 6= �1

We need to verify f is well-defined when x3 6= 1,�1. Indeed, we have (Note
x1 + ix2 6= 0.)


x1 + ix2

1 � x3
, 1

�
=


1,

1 � x3

x1 + ix2

�
=


1,

(1 � x3)(x1 � ix2)

x2
1 + x2

2

�
=


1,

x1 � ix2

1 + x3

�

which shows f is well-defined.
Now let’s show f is a diffeomorphism.
Let (U1,�1), (U2,�2) be the two charts on S2 defined as

U1 = S2\{(0, 0, 1)},�1(x1, x2, x3) = (
x1

1 � x3
,

x2

1 � x3
)

U2 = S2\{(0, 0,�1)},�2(x1, x2, x3) = (
x1

1 + x3
,

x2

1 + x3
)

Let (V1,'1), (V2,'2) be the two charts on CP1 defined by

V1 = CP1\{[1, 0]},'1([z1, z2]) =
z1

z2

V2 = CP1\{[0, 1]},'2([z1, z2]) =
z2

z1

So for p 2 U1, f has the form under the chart (U1,�1) and (V1,'1) as
following

'1 � f � ��1
1 (u1, u2) = u1 + iu2

which is a smooth function.
For p 2 U2, we have

'2 � f � �2(u1, u2) = u1 � iu2

which is also smooth.
Hence f is a diffeomorphism.

Problem 3
Recall the SO(n) is defined as following

SO(n) = {B 2 Rn⇥n : BT B = In and det(B) = 1}

So for any fixed A 2 SO(n), we know near A, we can write M as M = f�1(0)
with f : Rn⇥n ! Rn⇥n, f(B) = BT B. We can drop the condition of det(B) = 1
since in the sufficient small neighborhood U ⇢ Rn⇥n of A with det(B) > 0 for
all B 2 U . The condition BT B = In will force det(B) = 1.

Hence we have TAM = ker(dfA). We need to calculate dfA : TA(Rn⇥n) !
TIn(Rn⇥n). Actually we can identify TA(Rn⇥n) with Rn⇥n for short notation.
Hence for any P 2 Rn⇥n, we have

dfA(P ) = lim
t!0

f(A + tP ) � f(A)

t
= AT P + PT A
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2. Prove that the tangent bundle TM is always orientable as a manifold.

Solution:

Note dfA is a surjective to the symmetric metrics, so dim ker(dfA) = n2 �
(n+1)n

2 = n(n�1)
2 .

Hence SO(n) has dimension n(n�1)
2 and the tangent space of SO(n) at A is

the space {P 2 Rn⇥n : AT P + PT A = 0}.

Problem 4
Let A = {(Ui,�i)}i2I be an atlas of Mm. Then we let

Ã := {(TUi, �̃i) : i 2 I} with �̃i(p, v) = (�(p), d�p(v)) 2 �(Ui) ⇥ Rm

The transition maps between (TUi, �̃i), (TUj , �̃j) is

�ij(x, w) = (�j � ��1
i (x), d(�j � ��1

i )x(w))

Note that d(�j � ��1
i )x is linear, so the Jacobian matrix is just itself. Hence

d�ij(x, w) =


d
�
�j � ��1

i (x)
�

0
0 d

�
�j � ��1

i (x)
�
�

Hence det(d(�ij)) =
⇥
d(�j � ��1

i (x))
⇤2

> 0 since d(�j���1
i (x)) non-degenerate.

This means all the transition maps are orientation-preserving. Hence TM is
orientable.

Problem 5
(a) First, let’s suppose ⇡ : E ! B is trivial. Then there is a diffeomorphism
h : E ! B ⇥ Rn with h|⇡�1(x) is an isomorphism when restriction on the fiber
⇡�1(x) for x 2 B.

Let {e1, · · · , en} be the canonical basis in Rn and we choose n maps {si}1in

by si(b) = h�1(b, ei). Now we will show each si will be a sections.
Clearly si : B ! E is smooth since h is a diffeomorphism. Note that

since h|⇡�1(b) is an isomorphism between ⇡�1(b) and {b} ⇥ Rn, which means
h�1|{b}⇥Rn(b, ei) 2 ⇡�1(b) and hence ⇡ � si(b) = b, which shows si is indeed a
section.

Moreover, we know that {si(b)}1in forms a linearly independent set of
⇡�1(b) since h is an isomorphism on ⇡�1(b).

Secondly, let’s assume there is n linearly independent sections {si}1in.
Let’s define the map h : E ! B ⇥ Rn by the following method.

For each p 2 B, let b = ⇡(p). Since {si(b)}1in forms a linearly independent
set of ⇡�1(b), we can find unique (a1, a2, · · · , an) 2 Rn with p =

Pn
i=1 aisi(b).

Then we define h(p) := (⇡(p), (a1, a2, · · · , an)) 2 B ⇥Rn. Note that the inverse
of h is also well-defined and has form h�1(b, (a1, · · · , an)) =

Pn
i=1 aisi(b) as the

linear space. So we know that h|⇡�1(p) : ⇡�1(b) ! {b} ⇥ Rn is an isomorphism.
Now let’s verify h is a diffeomorphism. Let (Ui,�i) be a local trivializa-

tion of E near ⇡(p). I.e. �i : ⇡�1(Ui) ! Ui ⇥ Rn is a diffeomorphism with
⇡(p) 2 B and the restriction on each fiber is an isomorphism. Now since si

is a (smooth) section of ⇡ : E ! B, which means �i � si : Ui ! Ui ⇥ Rn

smooth. So the map �i � h�1 : Ui ⇥ Rn ! Ui ⇥ Rn is smooth with re-
spect to the first variable. But �i � h�1 is linear(isomorphism) with respect

4

2



3. Prove Jacobi identity : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for any X,Y, Z ∈ Γ(TM).

Solution:

Hence

dFp0(X1) = (�4x0y0, x
2
0 � y2

0 ,�y0z0, x0z0)

dFp0
(X2) = (2y0z0,�x0z0, x0y0, y

2
0 � z2

0)

dFp0
(X3) = (�x0z0,�y0z0, x

2
0 � z2

0 , x0y0)

It’s easy to verify at least two of above vectors are linearly independent provided
x2

0 + y2
0 + z2

0 = 1.
Combining that G̃ is a homeomorphism into its image and an immersion, we

know G̃ : RP2 ! R4 is indeed an embedding.

Problem 2
For any f 2 C1(M), we directly compute,

[X, [Y, Z]]f = X([Y, Z]f) � [Y, Z](Xf)

= X(Y Zf � ZY f) � Y ZXf + ZY Xf

= XY Zf � Y ZXf + XZY f � ZY Xf

Similarly

[Y, [Z, X]]f = Y ZXf � ZXY f + Y XZf � XZY f

[Z, [X, Y ]]f = ZXY f � XY Zf + ZY Xf � Y XZf

Adding them up

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]]f

= (XY Z + Y ZX + ZXY )f � (Y ZX + ZXY + XY Z)f

(XZY + Y XZ + ZY X)f � (ZY X + XZY + Y XZ)f

= 0

Hence
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0

Problem 3
Let f 2 C1(N) be any smooth function on N . For any X 2 �(TM), we will
have

(�⇤X)(f) � � = X(f � �)

This is because for any p 2 M , Xp(f ��) = �⇤(Xp)(f), and note �⇤(Xp) is a
vector at �(p), we have �⇤(Xp)(f) = �⇤X(f)(�(p)), which is the what we want.

Hence,

(�⇤X)(�⇤Y )(f) � � = X((�⇤Y )(f) � �) = X(Y (f � �)) = XY (f � �)

So

([�⇤X,�⇤Y ]f) � � = XY (f � �) � Y X(f � �) = [X, Y ](f � �) = �⇤[X, Y ](f) � �
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4. Let α be a (0, q)-tensor on M , X,Y1, · · · , Yq ∈ Γ(TM) be vector fields. Show that

(LXα)(Y1, · · · , Yq) = X(α(Y1, · · · , Yq))−
q∑

i=1

α(Y1, · · · , Yi−1, [X,Yi], Yi+1, · · · , Yq).

Solution:

Note that � is a diffeomorphism, so we have

[�⇤X,�⇤Y ]f = �⇤[X, Y ](f)

as a function on N . Hence [�⇤X,�⇤Y ] = �⇤[X, Y ].
Now let {�t}t2R be the flow generated by Y . If Y is not compactly supported,

we will only require {�t}t2(�",") defined near a fixed point p. Since �t is a local
diffeomorphism near p, we have

(�t)⇤ [Z, X] = [(�t)⇤Z, (�t)⇤X]

Take derivative with respect to t at t = 0, we will have

[[Z, X], Y ] = [[Z, Y ], X] + [Z, [X, Y ]]

at p where we’ve used the definition of derivative and right hand side comes
from by inserting a middle term in the limit.

Using [X, Y ] = [Y, X], we will have

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0

Problem 4
By definition of pull-back, we have

(�⇤
t↵)(Y1, · · · , Yq)(x) = ↵�t(x)(�t⇤Y1, · · · ,�t⇤Yq)

with x 2 M where �t is the flow generated by X.
So

(LX↵)(Y1, · · · , Yq)(x)

= lim
t!0

1

t
((�⇤

t↵) (Y1, · · · , Yq)(x) � ↵x(Y1, · · · , Yq))

= lim
t!0

1

t

�
↵�t(x)(�t⇤Y1, · · · ,�t⇤Yq) � ↵x(�t⇤Y1, · · · ,�t⇤Yq)

�

+

qX

i=1

lim
t!0

1

t
[↵x(�t⇤Y1, · · · ,�t⇤Yi�1,�t⇤Yi, Yi+1, · · · , Yq)

� ↵x(�t⇤Y1, · · · ,�t⇤Yi�1, Yi, Yi+1, · · · , Yq)]

=X(↵(Y1, · · · , Yq))(x) +

qX

i=1

↵x(Y1, · · · , Yi�1, LXYi, Yi+1, · · · , Yq)

=X(↵(Y1, · · · , Yq))(x) �
qX

i=1

↵x(Y1, · · · , Yi�1, [X,Yi], Yi+1, · · · , Yq)

Since the above identity holds for all x 2 M , we have

(LX↵)(Y1, · · · , Yq) = X(↵(Y1, · · · , Yq))�
qX

i=1

↵(Y1, · · · , Yi�1, [X, Yi], Yi+1, · · · , Yq)
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